Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 218: 19-24, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36057394

RESUMO

Venoms are evolutionary novelties that have real-world implications due to their impact upon human health. However, relative to the abundant studies of elapid and viperid snake venoms, fewer investigations have been undertaken on those of rear-fanged snakes as they are more problematic for obtaining venom. While most rear-fanged venomous snakes are not considered to be of great medical importance, several species are capable of producing fatalities. Most notable among these are snakes from the genus Rhabdophis, the Asian "keelback" snakes. Prior work have described potent procoagulant toxicity suggesting Factor X and prothrombin activation, but did not investigate the ability to activate other clotting factors. Here we show that in addition to activating both Factor X and prothrombin (with prothrombin twice that of FX), the venom of Rhabdophis subminiatus is able to more potently activate Factor VII (ten times that of prothrombin), while also activating FXII and FIX equipotently to prothrombin, and with FXI also activated but at a much lower level. The ability to activate FVII represents a third convergent evolution of this trait. The Australian elapid clade of [Oxyuranus (taipans) + Pseudonaja (brown snakes)] was the first identified to have evolved this trait. and only recently was it shown to be independently present in another lineage (the Central American viperid species Porthidium volcanicum). In addition, the abilities to activate FXI and FXII are also convergent between R. subminiatus and P. volcanicum, but with R. subminiatus being much more potent. By testing across amphibian, avian, and mammalian plasmas we demonstrate that the venom is potently procoagulant across diverse plasma types. However, consistent with dietary preference, R. subminiatus venom was most potent upon amphibian plasma. While a Rhabdophis antivenom is produced in Japan to treat R. tigrinus envenomings, it is scarce even within Japan and is not exported. As this genus is very wide-ranging in Asia, alternate treatment options are in need of development. Hence we tested the ability of candidate, broad-spectrum enzyme inhibitors to neutralize R. subminiatus venom: marimastat was more effective than prinomastat but both marimastat and prinomastat were significantly more effective than DMPS (2,3-Dimercapto-1-propanesulfonic acid). The findings of this study shed light on the evolution of these fascinating rear-fanged snakes as well as explored their systemic effects upon blood coagulation and point to potential treatment options for the rare, but potentially lethal encounters.


Assuntos
Antivenenos , Colubridae , Animais , Antivenenos/farmacologia , Austrália , Coagulação Sanguínea , Fatores de Coagulação Sanguínea/metabolismo , Fatores de Coagulação Sanguínea/farmacologia , Elapidae/metabolismo , Fator VII/metabolismo , Fator VII/farmacologia , Fator X/metabolismo , Fator X/farmacologia , Humanos , Ácidos Hidroxâmicos , Mamíferos , Compostos Orgânicos , Protrombina , Venenos de Serpentes/farmacologia , Unitiol/metabolismo , Unitiol/farmacologia
2.
Colloids Surf B Biointerfaces ; 160: 281-288, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946063

RESUMO

GM1 has generally been considered as the major receptor that binds to cholera toxin subunit B (CTB) due to its low dissociation constant. However, using a unique nanocube sensor technology, we have shown that CTB can also bind to other glycolipid receptors, fucosyl-GM1 and GD1b. Additionally, we have demonstrated that GM2 can contribute to CTB binding if present in a glycolipid mixture with a strongly binding receptor (GM1/fucosyl-GM1/GD1b). This hetero-multivalent binding result was unintuitive because the interaction between CTB and pure GM2 is negligible. We hypothesized that the reduced dimensionality of CTB-GM2 binding events is a major cause of the observed CTB binding enhancement. Once CTB has attached to a strong receptor, subsequent binding events are confined to a 2D membrane surface. Therefore, even a weak GM2 receptor could now participate in second or higher binding events because its surface reaction rate can be up to 104 times higher than the bulk reaction rate. To test this hypothesis, we altered the surface reaction rate by modulating the fluidity and heterogeneity of the model membrane. Decreasing membrane fluidity reduced the binding cooperativity between GM2 and a strong receptor. Our findings indicated a new protein-receptor binding assay, that can mimic complex cell membrane environment more accurately, is required to explore the inherent hetero-multivalency of the cell membrane. We have thus developed a new membrane perturbation protocol to efficiently screen receptor candidates involved in hetero-multivalent protein binding.


Assuntos
Toxina da Cólera/química , Gangliosídeo G(M1)/química , Gangliosídeo G(M2)/química , Bicamadas Lipídicas/química , Sítios de Ligação , Sequência de Carboidratos , Membrana Celular/química , Toxina da Cólera/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Gangliosídeo G(M1)/metabolismo , Gangliosídeo G(M2)/metabolismo , Cinética , Bicamadas Lipídicas/metabolismo , Nanopartículas Metálicas/química , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ligação Proteica , Dióxido de Silício/química , Termodinâmica , Unitiol/química , Unitiol/metabolismo
3.
Free Radic Biol Med ; 112: 445-451, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28844937

RESUMO

In light of the recent lead contamination of the water in Flint, Michigan and its potential adverse outcomes, much research and media attention has turned towards the safety profile of commonly used chelators. Dimercapto-1-propanesulfonic acid (DMPS) typically used in the treatment of lead, mercury and arsenic poisoning also displays a high affinity towards transition metals such as zinc and copper, essential for biological functioning. It is given in series of dosages (0.2-0.4g/day) over a long period, and has the ability to enter cells. In this work, we investigated the mechanism through which increasing concentrations of DMPS alter oocyte quality as judged by changes in microtubule morphology (MT) and chromosomal alignment (CH) of metaphase II mice oocyte. The oocytes were directly exposed to increasing concentration of DMPS (10, 25, 50, 100 and 300µM) for four hours (time of peak plasma concentration after administration) and reactive oxygen species (mainly hydroxyl radical and superoxide) and zinc content were measured. This data showed DMPS plays an important role in deterioration of oocyte quality through a mechanism involving zinc deficiency and enhancement of reactive oxygen species a major contributor to oocyte damage. Our current work, for the first time, demonstrates the possibility of DMPS to negatively impact fertility. This finding can not only help in counseling reproductive age patients undergoing such treatment but also in the development of potential therapies to alleviate oxidative damage and preserve fertility in people receiving heavy metal chelators.


Assuntos
Quelantes/farmacologia , Radical Hidroxila/agonistas , Oócitos/efeitos dos fármacos , Superóxidos/agonistas , Unitiol/farmacologia , Zinco/metabolismo , Animais , Cátions Bivalentes , Células Cultivadas , Quelantes/metabolismo , Criopreservação , Relação Dose-Resposta a Droga , Feminino , Radical Hidroxila/metabolismo , Metáfase/efeitos dos fármacos , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Oócitos/citologia , Oócitos/metabolismo , Superóxidos/metabolismo , Unitiol/metabolismo
4.
Metallomics ; 4(9): 995-1003, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22820874

RESUMO

The exposure of various human populations to Cd(2+) is of increasing health concern. After its gastrointestinal absorption into the bloodstream, Cd(2+) binds to α(2)-macroglobulin and serum albumin. Although animal studies have demonstrated that meso-2,3-dimercaptosuccinic acid (DMSA) and diethylenetriamine pentaacetic acid (DTPA) can effectively mobilize Cd(2+) to urine and decrease the Cd concentrations of the kidneys, the liver and the brain, not much is known about the abstraction of Cd(2+) from blood plasma proteins. We prepared a stock of Cd(2+) spiked rabbit plasma (2.0 µg of Cd(2+)/mL) and analyzed aliquots by size exclusion chromatography coupled on-line to an inductively coupled plasma atomic emission spectrometer (SEC-ICP-AES) while simultaneously monitoring the emission lines of Ca, Cd, Cu, Fe, and Zn. After the addition of 0.33 mM, 0.66 mM or 0.99 mM of DMSA, DTPA, 2,3-dimercapto-1-propanesulfonic acid (DMPS) or N-acetyl-l-cysteine (NAC) to plasma aliquots, the obtained mixtures were analyzed by SEC-ICP-AES after 5 min and 30 min. None of the investigated compounds adversely affected the plasma distribution of Fe at all investigated doses. At 0.33 mM, DTPA was most effective at mobilizing plasma protein bound Cd(2+) to a ~5 kDa Cd-species (100% removal), followed by DMPS (94%), DMSA (83%) and NAC (3%). All investigated compounds also mobilized Zn(2+) from plasma proteins to ~5 kDa Zn-species (DTPA: 80% removal; DMPS: 63%; DMSA: 29% and NAC: 3%). The addition of DTPA resulted in the dose-dependent elution of a [Ca-DTPA](3-) complex. Based on these results, 0.33 mM DMSA represents the best compromise that can be achieved between maximizing the abstraction of Cd(2+) from plasma proteins (83%), while minimizing the mobilization of Zn(2+) from plasma proteins (29%), and avoiding the complexation of Ca(2+).


Assuntos
Proteínas Sanguíneas/metabolismo , Cádmio/metabolismo , Quelantes/metabolismo , Acetilcisteína/química , Acetilcisteína/metabolismo , Animais , Cálcio/metabolismo , Quelantes/química , Cromatografia em Gel , Humanos , Coelhos , Espectrofotometria Atômica , Succímero/química , Succímero/metabolismo , Unitiol/química , Unitiol/metabolismo , Zinco/metabolismo
5.
Chem Res Toxicol ; 25(9): 1825-38, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22667351

RESUMO

Within the body of this review, we provide updates on the mechanisms involved in the renal handling mercury (Hg) and the vicinal dithiol complexing/chelating agents, 2,3-bis(sulfanyl)propane-1-sulfonate (known formerly as 2,3-dimercaptopropane-1-sulfonate, DMPS) and meso-2,3-bis(sulfanyl)succinate (known formerly as meso-2,3-dimercaptosuccinate, DMSA), with a focus on the therapeutic effects of these dithiols following exposure to different chemical forms of Hg. We begin by reviewing briefly some of the chemical properties of Hg, with an emphasis on the high bonding affinity between mercuric ions and reduced sulfur atoms, principally those contained in protein and nonprotein thiols. A discussion is provided on the current body of knowledge pertaining to the handling of various mercuric species within the kidneys, focusing on the primary cellular targets that take up and are affected adversely by these species of Hg, namely, proximal tubular epithelial cells. Subsequently, we provide a brief update on the current knowledge on the handling of DMPS and DMSA in the kidneys. In particular, parallels are drawn between the mechanisms participating in the uptake of various thiol S-conjugates of Hg in proximal tubular cells and mechanisms by which DMPS and DMSA gain entry into these target epithelial cells. Finally, we discuss factors that permit DMPS and DMSA to bind intracellular mercuric ions and mechanisms transporting DMPS and DMSA S-conjugates of Hg out of proximal tubular epithelial cells into the luminal compartment of the nephron, and promoting urinary excretion.


Assuntos
Rim/metabolismo , Mercúrio/química , Succímero/química , Unitiol/química , Animais , Quelantes/química , Quelantes/metabolismo , Quelantes/uso terapêutico , Transportadores de Ácidos Dicarboxílicos/metabolismo , Humanos , Rim/química , Rim/enzimologia , Mercúrio/metabolismo , Mercúrio/urina , Intoxicação por Mercúrio/tratamento farmacológico , Transportadores de Ânions Orgânicos/metabolismo , Succímero/metabolismo , Succímero/uso terapêutico , Compostos de Sulfidrila/química , Unitiol/metabolismo , Unitiol/uso terapêutico , gama-Glutamiltransferase/metabolismo
6.
Eur Biophys J ; 40(5): 641-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21264465

RESUMO

Annexin A5 (AnxA5) binds to negatively charged phospholipid membranes in a Ca(2+) dependent manner. Several studies already demonstrate that Mg(2+) ions cannot induce the binding. In this paper, quartz crystal microbalance with dissipation monitoring (QCM-D), Brewster angle microscopy (BAM), polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) and molecular dynamics (MD) were performed to elucidate the high specificity of Ca(2+) versus Mg(2+) on AnxA5 binding to membrane models. In the presence of Ca(2+), AnxA5 showed a strong interaction with lipids, the protein is adsorbed mainly in α-helix under the DMPS monolayer, with an orientation of the α-helices axes slightly tilted with respect to the normal of the phospholipid monolayer as revealed by PMIRRAS. The Ca(2+) ions interact strongly with the phosphate group of the phospholipid monolayer. In the presence of Mg(2+), instead of Ca(2+), no interaction of AnxA5 with lipids was detected. Molecular dynamics simulations allow us to explain the high specificity of calcium. Ca(2+) ions are well exposed and surrounded by labile water molecules at the surface of the protein, which then favour their binding to the phosphate group of the membrane, explaining their specificity. To the contrary, Mg(2+) ions are embedded in the protein structure, with a smaller number of water molecules strongly bound. We conclude that the embedded Mg(2+) ions inside the AnxA5 structure are not able to link the protein to the phosphate group of the phospholipids for this reason.


Assuntos
Anexina A5/química , Anexina A5/metabolismo , Cálcio/farmacologia , Membrana Celular/metabolismo , Magnésio/farmacologia , Adsorção , Ar , Membrana Celular/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Unitiol/química , Unitiol/metabolismo , Água/química
7.
Eur Biophys J ; 39(12): 1637-47, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20798935

RESUMO

Excipients in the pharmaceutical formulation of oral drugs are notably employed to improve drug stability. However, they can affect drug absorption and bioavailability. Passive transport through intestinal cell walls is the main absorption mechanism of drugs and, thus, involves an interaction with the membrane lipids. Therefore in this work, the effect of the excipient NaHCO(3) on the interaction of the anticholesterolemic drug fluvastatin sodium (FS) with membrane phospholipids was investigated by (1)H NMR and FTIR spectroscopy. Sodium bicarbonate is often combined with fluvastatin for oral delivery to prevent its degradation. We have used model DMPC/DMPS membranes to mimic the phospholipid content of gut cell membranes. The results presented in this work show a 100% affinity of FS for the membrane phospholipids that is not modified by the presence of the excipient. However, NaHCO(3) is shown to change the interaction mechanism of the drug. According to our data, FS enters the DMPC/DMPS bilayer interface by interacting with the lipids' polar headgroups and burying its aromatic moieties into the apolar core. Moreover, lipid segregation takes place between the anionic and zwitterionic lipids in the membranes due to a preferential interaction of FS with phosphatidylserines. The excipient counteracts this favored interaction without affecting the drug affinity and location in the bilayer. This work illustrates that preferential interactions with lipids can be involved in passive drug permeation mechanisms and gives evidence of a possible nonpassive role of certain excipients in the interaction of drugs with membrane lipids.


Assuntos
Química Farmacêutica , Excipientes/química , Ácidos Graxos Monoinsaturados/metabolismo , Indóis/metabolismo , Fosfolipídeos/metabolismo , Bicarbonato de Sódio/farmacologia , Anticolesterolemiantes/química , Anticolesterolemiantes/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Ácidos Graxos Monoinsaturados/química , Fluvastatina , Indóis/química , Espectroscopia de Ressonância Magnética , Fosfolipídeos/química , Bicarbonato de Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Unitiol/química , Unitiol/metabolismo
8.
Biochim Biophys Acta ; 1798(10): 1969-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20603101

RESUMO

We have investigated the influence of the neurotoxic Alzheimer's disease peptide amyloid-beta (25-35) on the dynamics of phospholipid membranes by means of quasi-elastic neutron scattering in the picosecond time-scale. Samples of pure phospholipids (DMPC/DMPS) and samples with amyloid-beta (25-35) peptide included have been compared. With two different orientations of the samples the directional dependence of the dynamics was probed. The sample temperature was varied between 290K and 320K to cover both the gel phase and the liquid-crystalline phase of the lipid membranes. The model for describing the dynamics combines a long-range translational diffusion of the lipid molecules and a spatially restricted diffusive motion. Amyloid-beta (25-35) peptide affects significantly the ps-dynamics of oriented lipid membranes in different ways. It accelerates the lateral diffusion especially in the liquid-crystalline phase. This is very important for all kinds of protein-protein interactions which are enabled and strongly influenced by the lateral diffusion such as signal and energy transducing cascades. Amyloid-beta (25-35) peptide also increases the local lipid mobility as probed by variations of the vibrational motions with a larger effect in the out-of-plane direction. Thus, the insertion of amyloid-beta (25-35) peptide changes not only the structure of phospholipid membranes as previously demonstrated by us employing neutron diffraction (disordering effect on the mosaicity of the lipid bilayer system) but also the dynamics inside the membranes. The amyloid-beta (25-35) peptide induced membrane alteration even at only 3mol% might be involved in the pathology of Alzheimer's disease as well as be a clue in early diagnosis and therapy.


Assuntos
Peptídeos beta-Amiloides/química , Bicamadas Lipídicas/química , Fragmentos de Peptídeos/química , Fosfolipídeos/química , Algoritmos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Humanos , Cinética , Bicamadas Lipídicas/metabolismo , Modelos Químicos , Modelos Moleculares , Difração de Nêutrons/métodos , Fragmentos de Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Temperatura , Fatores de Tempo , Unitiol/química , Unitiol/metabolismo
9.
Can J Physiol Pharmacol ; 88(2): 141-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20237588

RESUMO

Recent investigations involving intact rabbit renal proximal tubules indicated that organic anion transporter 3 (OAT3) may be involved in the transport of 2,3-dimercapto-1-propanesulfonic acid (DMPS). Therefore, we evaluated the interaction of OAT3 with DMPS to determine the effect of OAT3 on basolateral DMPS uptake. We used stably transfected HEK293 cells expressing human and rabbit orthologs of the exchanger OAT1 and OAT3. Using 6-carboxyfluorescein (6-CF) as a substrate, the IC50 determinations for reduced DMPS (DMPSH) revealed a stronger interaction with OAT1 than with OAT3 (rbOAT1, 123.3 +/- 13.7; hOAT1, 85.1 +/- 8.8; rbOAT3, 171.7 +/- 22.3; and hOAT3, 172.2 +/- 36.4 micromol/L). However, inhibition of 6-CF uptake by the oxidized form of DMPS (DMPSS), the main form of DMPS in the blood, showed a greater affinity for OAT3 (rbOAT1, 237.4 +/- 23; hOAT1, 104.6 +/- 13.1; rbOAT3, 52.4 +/- 7.6; and hOAT3, 31.6 +/- 6.6 micromol/L). To determine whether DMPSH and DMPSS are substrates for OAT3, we performed efflux studies with [14C]glutarate and inwardly directed gradients of glutarate. The inhibitors trans-stimulated the efflux of [14C]glutarate, suggesting that OAT3 may be able to transport both forms of DMPS. On the basis of the substantial interaction of OAT3 with DMPSS, we conclude that OAT3 represents the dominant basolateral player in renal detoxification processes resulting from use of DMPS.


Assuntos
Quelantes/metabolismo , Túbulos Renais Proximais/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/fisiologia , Unitiol/metabolismo , Animais , Linhagem Celular , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Metais Pesados/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Oxirredução/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Coelhos
10.
Toxicol Sci ; 110(2): 270-81, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19474219

RESUMO

Several mammalian enzymes catalyzing the phosphorolytic-arsenolytic cleavage of their substrates (thus yielding arsenylated metabolites) have been shown to facilitate reduction of arsenate (AsV) to the more toxic arsenite (AsIII) in presence of their substrate and a thiol. These include purine nucleoside phosphorylase (PNP), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and glycogen phosphorylase-a (GPa). In this work, we tested further enzymes, the bacterial phosphotransacetylases (PTAs) and PNP, for AsV reduction. The PTAs, which arsenolytically cleave acetyl-CoA producing acetyl-arsenate, were compared with GAPDH, which can also form acetyl-arsenate by arsenolysis of its nonphysiological substrate, acetyl-phosphate. As these enzymes also mediated AsV reduction, we can assert that facilitation of thiol-dependent AsV reduction may be a general property of enzymes that catalyze phosphorolytic-arsenolytic reactions. Because with all such enzymes arsenolysis is obligatory for AsV reduction, we analyzed the relationship between these two processes in presence of various thiol compounds, using PNP. Although no thiol influenced the rate of PNP-catalyzed arsenolysis, all enhanced the PNP-mediated AsV reduction, albeit differentially. Furthermore, the relative capacity of thiols to support AsV reduction mediated by PNP, GPa, PTA, and GAPDH apparently depended on the type of arsenylated metabolites (i.e., arsenate ester or anhydride) produced by these enzymes. Importantly, AsV reduction by both acetyl-arsenate-producing enzymes (i.e., PTA and GAPDH) exhibited striking similarities in responsiveness to various thiols, thus highlighting the role of arsenylated metabolite formation. This observation, together with the finding that PNP-mediated AsV reduction lags behind the PNP-catalyzed arsenolysis lead to the hypothesis that arsenolytic enzymes promote reduction of AsV by forming arsenylated metabolites which are more reducible to AsIII by thiols than inorganic AsV. This hypothesis is evaluated in the adjoining paper.


Assuntos
Arseniatos/metabolismo , Arsenitos/metabolismo , Proteínas de Bactérias/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicogênio Fosforilase/metabolismo , Fosfato Acetiltransferase/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Compostos de Sódio/metabolismo , Compostos de Sulfidrila/metabolismo , Acetilcoenzima A/metabolismo , Animais , Bovinos , Ditiotreitol/metabolismo , Glutationa/metabolismo , Inosina/metabolismo , Cinética , Mercaptoetanol/metabolismo , Modelos Químicos , Oxirredução , Coelhos , Succímero/metabolismo , Unitiol/metabolismo
11.
Toxicol Sci ; 110(2): 282-92, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19478237

RESUMO

Enzymes catalyzing the phosphorolytic cleavage of their substrates can reduce arsenate (AsV) to the more toxic arsenite (AsIII) via the arsenolytic substrate cleavage in presence of a reductant, as glutathione or dithiotreitol (DTT). We have shown this for purine nucleoside phosphorylase (PNP), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glycogen phosphorylase-a (GPa), and phosphotransacetylase (PTA). Using a multidisciplinary approach, we explored the mechanism whereby these enzymes mediate AsV reduction. It is known that PNP cleaves inosine with AsV into hypoxanthine and ribose-1-arsenate. In presence of inosine, AsV and DTT, PNP mediates AsIII formation. In this study, we incubated PNP first with inosine and AsV, allowing the arsenolytic reaction to run, then blocked this reaction with the PNP inhibitor BCX-1777, added DTT and continued the incubation. Despite inhibition of PNP, large amount of AsIII was formed in these incubations, indicating that PNP does not reduce AsV directly but forms a product (i.e., ribose-1-arsenate) that is reduced to AsIII by DTT. Similar studies with the other arsenolytic enzymes (GPa, GAPDH, and PTA) yielded similar results. Various thiols that differentially supported AsV reduction when present during PNP-catalyzed arsenolysis (DTT approximately dimercaptopropane-1-sulfonic acid > mercaptoethanol > DMSA > GSH) similarly supported AsV reduction when added only after a transient PNP-catalyzed arsenolysis, which preformed ribose-1-arsenate. Experiments with progressively delayed addition of DTT after BCX-1777 indicated that ribose-1-arsenate is short-lived with a half-life of 4 min. In conclusion, phosphorolytic enzymes, such as PNP, GAPDH, GPa, and PTA, promote thiol-dependent AsV reduction because they convert AsV into arsenylated products reducible by thiols more readily than AsV. In support of this view, reactivity studies using conceptual density functional theory reactivity descriptors (local softness, nucleofugality) indicate that reduction by thiols of the arsenylated metabolites is favored over AsV.


Assuntos
Arseniatos/metabolismo , Arsenitos/metabolismo , Proteínas de Bactérias/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicogênio Fosforilase/metabolismo , Fosfato Acetiltransferase/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Compostos de Sódio/metabolismo , Compostos de Sulfidrila/metabolismo , Acetilcoenzima A/metabolismo , Animais , Bovinos , Ditiotreitol/metabolismo , Inibidores Enzimáticos/farmacologia , Glutationa/metabolismo , Meia-Vida , Inosina/metabolismo , Cinética , Mercaptoetanol/metabolismo , Modelos Químicos , Oxirredução , Nucleosídeos de Purina/farmacologia , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Pirimidinonas/farmacologia , Coelhos , Succímero/metabolismo , Unitiol/metabolismo
12.
Cell Mol Biol (Noisy-le-grand) ; 53(1): 26-47, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17519110

RESUMO

Health hazards caused by heavy metals have become a great concern to the population. Lead and arsenic are one of the most important current global environmental toxicants. Their toxic manifestations are being considered caused primarily due to the imbalance between pro-oxidant and antioxidant homeostasis and also due to a high affinity of these metals for thiol groups on functional proteins. They also interfere with a number of other body functions and are known to affect central nervous system (CNS), hematopoietic system, liver and kidneys and produce serious disorders. They produce both acute and chronic poisoning, of which chronic poisoning is more dangerous as its very difficult to revert back to normal condition after chronic exposure to these insidious metals present in our life. Despite many years of research, we are still far from an effective treatment of chronic plumbism and arsenicosis. Current approved treatment lies in the administration of chelating agents that forms an insoluble complex with the metal and removes it. They have been used clinically as antidotes for treating acute and chronic poisoning. The most widely used chelating agents are calcium disodium ethylenediamine tetra acetic acid (CaNa2EDTA), D-penicillamine and British anti-lewisite (BAL). Meso 2,3 dimercaptosuccinic acid (DMSA), an analogue of BAL, has been tried successfully in animals as well as in humans. But it is unable to remove the metal from intracellular sites. Effective chelation therapy for intoxication by heavy metals depends on whether the chelating agents are able to reach the intracellular site where the heavy metal is firmly bound. One of the important approaches has been the use of combination therapy. This includes use of structurally different chelators or a combination of an adjuvant/ antioxidant/ herbal extracts and a chelator to provide better clinical/ biochemical recovery. A number of other strategies have been suggested to minimize the numerous problems. This article presents the recent development made in this area with possible directions for future research.


Assuntos
Arsênio/metabolismo , Quelantes/metabolismo , Radicais Livres/metabolismo , Chumbo/metabolismo , Acetilcisteína/metabolismo , Adjuvantes Farmacêuticos/metabolismo , Animais , Antioxidantes/metabolismo , Arsênio/toxicidade , Intoxicação por Arsênico/fisiopatologia , Intoxicação por Arsênico/terapia , Ácido Ascórbico/metabolismo , Cálcio/metabolismo , Quelantes/química , Quelantes/uso terapêutico , Radicais Livres/toxicidade , Humanos , Chumbo/toxicidade , Intoxicação por Chumbo/fisiopatologia , Intoxicação por Chumbo/terapia , Melatonina/metabolismo , Metais/metabolismo , Micronutrientes/metabolismo , Estrutura Molecular , Succímero/química , Succímero/metabolismo , Succímero/uso terapêutico , Taurina/metabolismo , Ácido Tióctico/metabolismo , Unitiol/química , Unitiol/metabolismo , Unitiol/uso terapêutico , Vitamina E/metabolismo
13.
Life Sci ; 77(18): 2324-37, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-15964026

RESUMO

Chronic arsenic toxicity is a widespread problem, not only in India and Bangladesh but also in various other regions of the world. Exposure to arsenic may occur from natural or industrial sources. The treatment that is in use at present employs administration of thiol chelators, such as meso 2,3-dimercaptosuccinic acid (DMSA) and sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), which facilitate its excretion from the body. However, these chelating agents are compromised with number of limitations due to their lipophobic nature, particularly for their use in cases of chronic poisoning. During chronic exposure, arsenic gains access into the cell and it becomes mandatory for a drug to cross cell membrane to chelate intracellular arsenic. To address this problem, analogs of DMSA having lipophilic character, were examined against chronic arsenic poisoning in experimental animals. In the present study, therapeutic efficacy of meso 2,3-dimercaptosuccinic acid (DMSA), sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), monoisoamyl DMSA (MiADMSA) were compared in terms of reducing arsenic burden, as well as recovery in the altered biochemical variables particularly suggestive of oxidative stress. Adult male Wistar rats were given 100-ppm arsenic for 10 weeks followed by chelation therapy with the above chelating agents at a dose of 50 mg/Kg (orally) once daily for 5 consecutive days. Arsenic exposure resulted in marked elevation in reactive oxygen species (ROS) in blood, inhibition of ALAD activity and depletion of GSH. These changes were accompanied by significant decline in blood hemoglobin level. MiADMSA was the most effective chelator in reducing ROS in red blood cells, and in restoring blood ALAD compared to two other chelators. Brain superoxide dismutase (SOD) and glutathione peroxidase (GPx) decreased, while ROS and TBARS increased significantly following arsenic exposure. There was a significant increase in the activity of glutathione-S-transferase (GST) with a corresponding decline in its substrate i.e. glutathione. Among all the three chelators, MiADMSA showed maximum reduction in the level of ROS in brain. Additionally, administration of MiADMSA was most effective in counteracting arsenic induced inhibition in brain ALAD, SOD and GPx activity. Based on these results and in particular higher metal decorporation from blood and brain, we suggest MiADMSA to be a potential drug of choice for the treatment of chronic arsenic poisoning. However, further studies are required for the choice of appropriate dose, duration of treatment and possible effects on other major organs.


Assuntos
Intoxicação por Arsênico/tratamento farmacológico , Arsênio/toxicidade , Quelantes/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , 5-Aminolevulinato Sintetase/metabolismo , Animais , Arsênio/metabolismo , Quelantes/metabolismo , Dano ao DNA/efeitos dos fármacos , Glutationa/sangue , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Masculino , Sintase do Porfobilinogênio/sangue , Sintase do Porfobilinogênio/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/sangue , Succímero/análogos & derivados , Succímero/metabolismo , Succímero/uso terapêutico , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Unitiol/metabolismo , Unitiol/uso terapêutico
14.
Chem Res Toxicol ; 17(8): 999-1006, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15310232

RESUMO

Clinical chelation therapy of mercury poisoning generally uses one or both of two drugs--meso-dimercaptosuccinic acid (DMSA) and dimercaptopropanesulfonic acid (DMPS), commercially sold as Chemet and Dimaval, respectively. We have used a combination of mercury L(III)-edge X-ray absorption spectroscopy and density functional theory calculations to investigate the chemistry of interaction of mercuric ions with each of these chelation therapy drugs. We show that neither DMSA nor DMPS forms a true chelate complex with mercuric ions and that these drugs should be considered suboptimal for their clinical task of binding mercuric ions. We discuss the design criteria for a mercuric specific chelator molecule or "custom chelator", which might form the basis for an improved clinical treatment.


Assuntos
Quelantes/química , Terapia por Quelação , Intoxicação por Mercúrio/tratamento farmacológico , Mercúrio/química , Succímero/química , Unitiol/química , Quelantes/metabolismo , Mercúrio/metabolismo , Mercúrio/toxicidade , Análise Espectral/métodos , Succímero/metabolismo , Succímero/uso terapêutico , Unitiol/metabolismo , Unitiol/uso terapêutico
15.
Proc Natl Acad Sci U S A ; 99(21): 13504-9, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12368478

RESUMO

Thermal stress in living cells produces multiple changes that ultimately affect membrane structure and function. We report that two members of the family of small heat-shock proteins (sHsp) (alpha-crystallin and Synechocystis HSP17) have stabilizing effects on model membranes formed of synthetic and cyanobacterial lipids. In anionic membranes of dimyristoylphosphatidylglycerol and dimyristoylphosphatidylserine, both HSP17 and alpha-crystallin strongly stabilize the liquid-crystalline state. Evidence from infrared spectroscopy indicates that lipid/sHsp interactions are mediated by the polar headgroup region and that the proteins strongly affect the hydrophobic core. In membranes composed of the nonbilayer lipid dielaidoylphosphatidylethanolamine, both HSP17 and alpha-crystallin inhibit the formation of inverted hexagonal structure and stabilize the bilayer liquid-crystalline state, suggesting that sHsps can modulate membrane lipid polymorphism. In membranes composed of monogalactosyldiacylglycerol and phosphatidylglycerol (both enriched with unsaturated fatty acids) isolated from Synechocystis thylakoids, HSP17 and alpha-crystallin increase the molecular order in the fluid-like state. The data show that the nature of sHsp/membrane interactions depends on the lipid composition and extent of lipid unsaturation, and that sHsps can regulate membrane fluidity. We infer from these results that the association between sHsps and membranes may constitute a general mechanism that preserves membrane integrity during thermal fluctuations.


Assuntos
Proteínas de Choque Térmico/metabolismo , Lipídeos de Membrana/metabolismo , Retroalimentação , Proteínas de Choque Térmico/química , Técnicas In Vitro , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos , Lipídeos de Membrana/química , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Unitiol/química , Unitiol/metabolismo , alfa-Cristalinas/química , alfa-Cristalinas/metabolismo
16.
Chembiochem ; 3(2-3): 190-7, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11921397

RESUMO

By use of the quartz crystal microbalance technique, the interaction of the Raf-Ras binding domain (RafRBD) and the cysteine-rich domain Raf-C1 with lipids was quantified by using solid-supported bilayers immobilized on gold electrodes deposited on 5 MHz quartz plates. Solid-supported lipid bilayers were composed of an initial octanethiol monolayer chemisorbed on gold and a physisorbed phospholipid monolayer varying in its lipid composition as the outermost layer. The integrity of bilayer preparation was monitored by impedance spectroscopy. For binding experiments, a protein construct comprising the RafRBD and Raf-C1 linked to the maltose binding protein and a His tag, termed MBP-Raf-C1, was used. Dissociation constants and rate constants of the association and dissociation were obtained for various 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS) lipid mixtures. Independently of the phosphatidylserine (PS) content, the dissociation constants were in the order of 5x10(-7) M, while the on-rate constants were in the range of 2x10(3) (M s)(-1) and the off-rate constants in the range of 1x10(-3) s(-1). The maximum frequency shift increased significantly with increasing amounts of DMPS; this indicates that this negatively charged lipid is the primary binding site for MBP-Raf-C1. Exchange of DMPS for 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) did not alter the thermodynamics and kinetics of protein binding, which implies that the protein interaction is mainly electrostatically driven. Scanning force microscopy (SFM) was employed to render protein adsorption visible and to confirm the assumption of a protein monolayer on the lipid layer. SFM images clearly revealed that the protein binds preferentially, but not solely, to negatively charged phosphatidylserine headgroups. We hypothesize that PS-enriched domains are initial binding sites with high affinity for Raf-C1, but that lateral interactions may account for protein domain growth.


Assuntos
Bicamadas Lipídicas/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Adsorção , Técnicas Biossensoriais/instrumentação , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Dimiristoilfosfatidilcolina/farmacocinética , Ouro , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Estrutura Terciária de Proteína , Termodinâmica , Unitiol/química , Unitiol/metabolismo , Unitiol/farmacocinética
17.
Biophys J ; 81(3): 1511-20, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11509364

RESUMO

Phosphatidylserine and cholesterol are two major components of the cytoplasmic leaflet of the plasma membrane. The arrangement of cholesterol is markedly affected by the presence of phosphatidylserine in model membranes. At relatively low mol fractions of cholesterol in phosphatidylserine, compared with other phospholipids, cholesterol crystallites are formed that exhibit both thermotropic phase transitions as well as diffraction of x-rays. In the present study we have observed and characterized a novel thermotropic transition occurring in mixtures of phosphatidylserine and cholesterol. This new transition is observed at 96 degrees C by differential scanning calorimetry (DSC), using a heating scan rate of 2 degrees C/min. Observation of the transition requires that the hydrated lipid mixture be incubated for several days, depending on the temperature of incubation. The rate of formation of the material exhibiting a transition at 96 degrees C is more rapid at higher incubation temperatures. At 37 degrees C the half-time of conversion is approximately 7 days. Concomitant with the appearance of the 96 degrees C peak the previously known transitions of cholesterol, occurring at approximately 38 degrees C and 75 degrees C on heating scans of freshly prepared suspensions, disappear. These two transitions correspond to the polymorphic transition of anhydrous cholesterol and to the dehydration of cholesterol monohydrate, respectively. The loss of the 75 degrees C peak takes a longer time than that of the 38 degrees C peak, indicating that anhydrous cholesterol first gets hydrated to the monohydrate form exhibiting a transition at 75 degrees C and subsequently is converted by additional time of incubation to an altered form of the monohydrate, showing a phase transition at 96 degrees C. After several weeks of incubation at 37 degrees C, only the form with a phase transition at 96 degrees C remains. If such a sample undergoes several successive heating and cooling cycles, the 96 degrees C peak disappears and the 38 degrees C transition reappears on heating. For samples of 1-palmitoyl-2-oleoyl phosphatidylserine or of 1-stearoyl-2-oleoyl phosphatidylserine having mol fractions of cholesterol between 0.4 and 0.7, the 38 degrees C transition that reappears after the melting of the 96 degrees C component generally has the same enthalpy as do freshly prepared samples. This demonstrates that, at least for these samples, the amount of anhydrous cholesterol crystallites formed is indeed a property of the lipid mixture. We have also examined variations in the method of preparation of the sample and find similar behavior in all cases, although there are quantitative differences. The 96 degrees C transition is partially reversible on cooling and reheating. This transition is also scan rate dependent, indicating that it is, at least in part, kinetically determined. The enthalpy of the 96 degrees C transition, after incubation of the sample for 3 weeks at 37 degrees C is dependent on the ratio of cholesterol to 1-palmitoyl-2-oleoyl phosphatidylserine or to 1-stearoyl-2-oleoyl phosphatidylserine, with the enthalpy per mole cholesterol increasing between cholesterol mol fractions of 0.2 and 0.5. Dimyristoyl phosphatidylserine at a 1:1 molar ratio with cholesterol, after incubation at 37 degrees C, exhibits a transition at 95 degrees C that reverses on cooling at 44 degrees C, instead of 60 degrees C, as observed with either 1-palmitoyl-2-oleoyl phosphatidylserine or 1-stearoyl-2-oleoyl phosphatidylserine. These findings along with the essential absence of the 96 degrees C transition in pure cholesterol or in cholesterol/phosphatidylcholine mixtures, indicates that the phospholipid affects the characteristics of the transition, and therefore the cholesterol crystallites must be in direct contact with the phospholipid and are not simply in the form of pure crystals of cholesterol. These observations are particularly important in view of recent observations of the presence of cholesterol crystals in biological systems.


Assuntos
Colesterol/química , Colesterol/metabolismo , Temperatura Alta , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Fosfatidiletanolaminas/metabolismo , Fatores de Tempo , Unitiol/metabolismo
18.
Toxicol Appl Pharmacol ; 165(1): 74-83, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10814555

RESUMO

The administration of sodium 2,3-dimercapto-1-propane sulfonate (DMPS) to humans chronically exposed to inorganic arsenic in their drinking water resulted in the increased urinary excretion of arsenic, the appearance and identification of monomethylarsonous acid (MMA(III)) in their urine, and a large decrease in the concentration and percentage of urinary dimethylarsinic acid (DMA). This is the first time that MMA(III) has been detected in the urine. In vitro biochemical experiments were then designed and performed to understand the urinary appearance of MMA(III) and decrease of DMA. The DMPS-MMA(III) complex was not active as a substrate for the MMA(III) methyltransferase. The experimental results support the hypothesis that DMPS competes with endogenous ligands for MMA(III), forming a DMPS-MMA complex that is readily excreted in the urine and points out the need for studying the biochemical toxicology of MMA(III). It should be emphasized that MMA(III) was excreted in the urine only after DMPS administration. The results of these studies raise many questions about the potential central role of MMA(III) in the toxicity of inorganic arsenic and to the potential involvement of MMA(III) in the little-understood etiology of hyperkeratosis, hyperpigmentation, and cancer that can result from chronic inorganic arsenic exposure.


Assuntos
Arsenicais/urina , Ácido Cacodílico/urina , Compostos Organometálicos/urina , Unitiol/administração & dosagem , Adulto , Animais , Intoxicação por Arsênico/prevenção & controle , Quelantes/administração & dosagem , Quelantes/metabolismo , Quelantes/farmacologia , Quelantes/uso terapêutico , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Metiltransferases/antagonistas & inibidores , Pessoa de Meia-Idade , Coelhos , Unitiol/metabolismo , Unitiol/farmacologia , Unitiol/uso terapêutico , Poluentes da Água
19.
Biophys J ; 73(5): 2546-55, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9370448

RESUMO

The interactions of lysine oligopeptides with dimyristoyl phosphatidylglycerol (DMPG) bilayer membranes were studied using spin-labeled lipids and electron spin resonance spectroscopy. Tetralysine and pentalysine were chosen as models for the basic amino acid clusters found in a variety of cytoplasmic membrane-associating proteins, and polylysine was chosen as representative of highly basic peripherally bound proteins. A greater motional restriction of the lipid chains was found with increasing length of the peptide, while the saturation ratio of lipids per peptide was lower for the shorter peptides. In DMPG and dimyristoylphosphatidylserine host membranes, the perturbation of the lipid chain mobility by polylysine was greater for negatively charged spin-labeled lipids than for zwitterionic lipids, but for the shorter lysine peptides these differences were smaller. In mixed bilayers composed of DMPG and dimyristoylphosphatidylcholine, little difference was found in selectivity between spin-labeled phospholipid species on binding pentalysine. Surface binding of the basic lysine peptides strongly reduced the interfacial pK of spin-labeled fatty acid incorporated into the DMPG bilayers, to a greater extent for polylysine than for tetralysine or pentalysine at saturation. The results are consistent with a predominantly electrostatic interaction with the shorter lysine peptides, but with a closer surface association with the longer polylysine peptide.


Assuntos
Bicamadas Lipídicas/metabolismo , Oligopeptídeos/metabolismo , Fosfolipídeos/metabolismo , Polilisina/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Oligopeptídeos/química , Fosfatidilgliceróis/metabolismo , Fosfolipídeos/química , Polilisina/química , Marcadores de Spin/síntese química , Eletricidade Estática , Ácidos Esteáricos/metabolismo , Propriedades de Superfície , Temperatura , Termodinâmica , Unitiol/metabolismo
20.
Biochemistry ; 36(20): 6141-8, 1997 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-9166785

RESUMO

To test the hypothesis that activation of protein kinase C (PKC) is related to the interface between coexisting diacylglycerol- (DAG-) enriched and DAG-poor phases, the thermotropic phase behavior of the ternary mixtures dimyristoylphosphatidylcholine (DMPC)/dimyristoylphosphatidylserine (DMPS)/dioleoylglycerol (DO), DMPC/DMPS/1-palmitoyl-2-oleoylglycerol (PO), and DMPC/DMPS/dimyristoylglycerol (DM) was analyzed and compared with the ability of the lipid mixtures to support PKC activity. Differential scanning calorimetry (DSC) was used to monitor the gel-to-liquid crystalline phase transition as a function of the mole fraction of DO (chiDO), PO (chiPO), or DM (chiDM) in DMPC/DMPS (1:1) multilamellar vesicles (MLVs) and of chiDO in large unilamellar vesicles (LUVs). The addition of DAG at low mole fractions gave rise to the appearance of two or more overlapping transitions. The phase boundaries of the ternary mixtures deduced from the partial phase diagrams were chiDO = approximately 0.10 and approximately 0.3 for DMPC/DMPS/DO, chiPO = approximately 0.05 and approximately 0.4 for DMPC/DMPS/PO, and chiDM = approximately 0.025 and approximately 0.5-0.6 for DMPC/ DMPS/DM. Above these mole fractions of DAG, the transitions again became very sharp. The ability of the lipid mixtures to support activity of PKC alpha and PKC eta was examined below and above the gel-to-liquid crystalline phase transition. In the gel phase, PKC activity went through a maximum as a function of increasing mole fraction of each DAG and was restricted to lipid compositions in which coexisting phases were observed. Maximal activity decreased with increasing saturation of the DAG. In the fluid state, maximal PKC activity was shifted to higher DO mole fractions and the peak was much broader. Collectively, these data support a role for both the presence and nature of interface between compositionally distinct domains in activation of PKC.


Assuntos
Diglicerídeos/metabolismo , Proteína Quinase C/metabolismo , Varredura Diferencial de Calorimetria , Dimiristoilfosfatidilcolina/metabolismo , Ativação Enzimática , Cloreto de Magnésio/farmacologia , Membranas/metabolismo , Termodinâmica , Unitiol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...